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Plasmalogens ensure the stability of non-neuronal (microglial) cells
during long-term cytotoxicity
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Abstract

Microglia (MG) are resident phagocytes in the brain responsible for neuronal maintenance. The regulation of MG necroptosis is
required for protecting neurons during neurodegenerative diseases. Therefore, this study proposed to elucidate the molecular
mechanisms underlying microglia necroptosis during long-time apoptotic stimuli (lipopolysaccharide, LPS). The protective role
of plasmalogens (PLS) was also investigated against LPS insult in MG cells (including BV2 and MG6 cell lines). LPS produced
time-dependent decreases in the survival of BV2 and MG6 cells mediated by the caspase signaling pathway. Interestingly, MG
death was mediated by caspase-8 and 9 signaling pathways suggesting that MG necroptosis was actively attributed to long-time
LPS treatment through intrinsic and extrinsic pathways. Notably, caspase signaling was markedly inhibited in the PLS-pretreated
cells; thereby, PLS were capable of maintaining the MG cell population and inhibit the MG necroptosis against the longtime of

LPS administration via its antioxidant and anti-inflammatory properties.
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Introduction

Microglia (MG) cells, primary immune cells, represent 5-12%
of'the total neuronal cells in rodents and 0.5%—16% in humans
(Gomez-Nicola and Perry 2015; Shen et al. 2018). Since MG
cells play a pivotal role in neuronal maintenance through con-
stant monitoring of the neuronal physiology, scavenging the
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damaged neurons, infectious microorganisms, junk proteins,
and toxic agents. These functional roles highlight the necessi-
ty of MG in protecting the neuronal cells during neurodegen-
erative disorders (Hristovska and Pascual 2016; Pierre et al.
2017; Fujino et al. 2020). They are documented as a poten-
tially sensitive indicator for pathological alterations in the
CNS (Colonna and Butovsky 2017).
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MG cells are abnormally activated in neurodegenerative
disorders such as multiple sclerosis, Parkinson’s disease, and
Alzheimer’s disease (Fujino et al. 2017; Heneka 2017; Valori
et al. 2019). Several cytokines and oxygen reactive radicals
are abundantly released after such activation, followed by
neuronal death and initiation of neurodegenerative diseases
(Colonna and Butovsky 2017). It is hypothesized that over-
activated MG cells undergo auto-regulation via necroptotic
mechanisms to protect the neuronal cells from the harmful
MG over-activation impacts (Ali et al. 2019). Accumulating
evidence has demonstrated MG necroptosis in ischemic stroke
(Yang et al. 2018), spinal cord damage (Fan et al. 2016), and
various disorders of the nervous system (Caccamo et al. 2017;
Royce et al. 2019). The recognition receptors Toll-like recep-
tors 4 (TLR4) expressed in MG are strongly involved in such
necroptotic regulation (Shen et al. 2018).

Lipopolysaccharide (LPS) is the main constituent of the
gram-negative bacteria cell membrane and is defined as
TLR4-ligand (Luo et al. 2017). Interestingly, the TLR4-
ligands are strongly associated with the mechanisms involved
in MG necroptosis and inflammatory response (Maeda and
Fadeel 2014; Huang et al. 2018). Therefore, inhibiting MG
necroptosis is essential to control the progressive neuronal
damage (Oliveira et al. 2018). Furthermore, several lines of
evidence point to caspases’ involvement in the inflammatory
process linked to neurodegenerative diseases (Julien and
Wells 2017; Zhang et al. 2018). Complex different signaling
pathways such as death receptor signaling, endoplasmic retic-
ulum, and mitochondria-mediated pathways orchestrate a di-
versity of cell death processes including necroptosis, apopto-
sis, and autophagy (Fulda 2009; Vanden Berghe et al. 2015;
Pefia-Blanco and Garcia-Saez 2018).

Plasmalogens (PLS) are a class of phospholipids content of
scallop and contain an ether bond in position Sy 1 to an alkenyl
group. PLS are distributed in various tissues including mainly
cell membranes of nervous, immune, and cardiovascular tis-
sues. They are strongly involved in nervous system develop-
ment, inflammatory pathways, and cellular antioxidant de-
fense mechanisms (Fujino et al. 2020). PLS has been shown
to have a modulatory role in reducing LPS-induced inflamma-
tion in MG cells through inhibiting TLR-4 endocytosis (Ali
et al. 2019). Accumulative evidence underpin the significant
protective activity of PLS against AD and some neurodegen-
erative diseases (Fujino et al. 2017, 2020; Su et al. 2019).
However, the mechanistic insights underlie the apoptotic path-
ways and the protective role of PLS in LPS-long-time treated
MG cells remain unclear.

Therefore, the goal of this research was to look at the mo-
lecular processes underlying the effects of serum starvation
and long-term LPS exposure in BV2 and MG6 cells, as well
as the responsive modulatory role of PLS in injured cells.
Opposite to neuronal cells, the results revealed that the non-
neuronal MG cells were insensitive to serum starvation-

@ Springer

induced death. However, prolonged LPS exposure stimulates
necroptosis of the MG cells via caspase signaling pathways.
Western blotting was performed to understand the molecular
mechanism of the necroptosis cascade produced by LPS and/
or PLS treatment. The findings support a role for PLS in
protecting the MG cells against long-term LPS-induced

injury.

Materials and methods
Cultured cells and reagents

MG6 cell lines were purchased (RCB catalog #RCB2403,
RRID: CVCL_8732) from Health Science Research
Resources Bank, Japan; BV2 immortalized cells were given
as a gift from Dr. Hidetoshi Saitoh, Kyushu University, Japan.
The BV2 and MG6 cells were held in a DMEM medium with
10% heat-inactivated fetal bovine serum (FBS; Invitrogen,
Carlsbad, CA, USA), 50 ug/ml penicillin, and 50 pg/ml strep-
tomycin (Invitrogen). At 37 °C, cells were cultured in a hu-
midified chamber with 5% CO,. Highly purity LPS was pur-
chased from Sigma-Aldrich, St. Louis, MO, USA. PLS were
extracted and purified from scallop as previously described
(Sejimo et al. 2018). The primary antibodies for cleaved
PARP-1, cleaved caspase-9, 3, and 8 were obtained from
Cell Signaling Technology, Massachusetts, USA. While, (3-
actin antibody was provided by Santa-Cruz Biotechnology
Inc., Texas, USA.

TUNEL assays

The suggested protocol of the In Situ Cell Death Detection
Kit, TMR red, was used to quantify cell apoptosis using
TUNEL assays (Roche). MG6 and BV2 cells were seeded in
12 chamber plates at a density of 1x10° cells/ chamber. The
cultivated cell was rinsed in PBS and fixed for 15 min at room
temperature in 2% paraformaldehyde. After a PBS wash, cells
were permeabilized with a solution containing 0.1 % Triton
X-100 in 0.1 % sodium citrate for 5 min. The cells were then
rinsed again in PBS before incubating for 60 min at 37 °C with
the TUNEL combination. Finally, the cells were thoroughly
rinsed in cold PBS to eliminate any remaining TUNEL mix-
ture and treated for 20 min with 1 pug/ml DAPI. After mount-
ing, the cells were visualized by fluorescence lifetime imaging
microscopy (Keyence, BZ-9000 series and BZ-X700 series,
Japan).

Western blot analysis
MG6 and BV?2 cells were cultured in 6 cm dishes at a density

of 1x10%ml. Immunoblotting was performed as noted earlier
(Hossain et al. 2013). SDS-PAGE (8 to 15 %) was used to
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isolate the whole-cell lysate protein. The separated proteins
were then transferred from the gel to nitrocellulose membrane
(BIO-RAD) and incubated in 0.1% Tween-tris-buffered saline
containing 5 % skimmed milk for blocking. Next, all proteins
were probed against their specific antibodies (cleaved PARP-
1, cleaved caspase-9, 3, and 8) at dilution of 1:1000. (3-actin
antibody was set as an endogenous control for this study.
After that, the membranes were rinsed in TBS and incubated
with the secondary antibodies for 120 min at 25 °C. Finally,
protein bands were visualized by exposure to Super Signal
West Pico Chemiluminescent Substrate (Thermo Scientific,
Massachusetts) using LAS4000 Biomolecular Imager.
Quantification of the band intensity was analyzed by densito-
metric analysis using the Image-J program.

Cell proliferation assays

MG6 and BV2 cells were seeded in 96 well plates at a density
of 1x10* cells/well. As previously defined, the Cell Counting
Kit-8 (cell proliferation assay kit; Dojindo, Kumamoto, Japan)
was used to test the vitality of the cells (Hossain et al. 2013).
At a wavelength of 450 nm, the absorbance value was mea-
sured using an ELISA plate reader.

Data statistics

All values are presented as means + SE. One-way ANOVA
and Student’s #-test were used to investigate the effects of LPS
in more than two groups and only two groups, respectively.
Significant was described as a p value of less than 0.05. The
Graph Pad Prism 5.0 program was used to perform all of the
statistics.

Results

Insensitivity of BV2 cells to serum starvation-induced
cytotoxicity

MTT assay was used to measure cell death in comparison to
control cells. In contrast to the neuronal cells, treatment of
BV2 cells with serum starvation (FBS 2%) for 72 h did not
affect the cell viability (Fig. 1A). No changes were observed
in the cultured BV2 were observed (Fig. 1B). Furthermore,
there were no increases in the percentage of TUNEL-positive
cells (Fig. 1C, D).

Serum starvation failed to induce cytotoxicity in MG6
cells

MG cells treated with low serum medium (FBS 2%) for 72 h,
MTT assay was examined to the cell death compared with
control cells (FBS 10%), treatment with FBS 2% did not affect

the cell viability (Fig. 2A). Microscopic cell imaging that fol-
lowing serum starvation of microglial MG6 cells showed no
decrease in cell number (Fig. 2B). Besides, there were no
recorded increases in the TUNEL-positive cells (Fig. 2C, D).

Sensitivity of BV2 microglial cells to LPS cytotoxicity

LPS treatment resulted in a substantial reduction in the BV2
cell viability after 36 h following treatment with 1 pL LPS and
switch from inflammatory activation to cell death, at different
time points (Fig. 3A, B). However, in BV2 treated with 1 puL
LPS for 6, 12, and 24 h, cell viability showed no alterations
(Fig. 3A). In comparison to serum starvation, LPS treatment
resulted in a substantial increase in the percentage of TUNEL-
positive cells in BV2 cells (Fig. 3C. D).

Sensitivity of MG6 cells to LPS cytotoxicity

Indeed, the detection of MG6 cell viability by MTT assay
showed that LPS treatment caused a time-dependent dramatic
inhibition of cell viability. Exposure to 1 pL LPS for 6, 12,
and 24 h did not cause changes in the cell viability (Fig. 4A).
While, treatment for a long-time 36 h remarkably lowered the
viability of cells (Fig. 4A, B). In addition, the TUNEL assay
also revealed that LPS positively increases the number of
TUNEL-positive cells (Fig. 4C, D).

Effect of LPS treatment on the apoptotic pathways in
BV2 cells

Treatment of the BV2 cells with 1 uLL LPS for 36 h triggered
the up-regulation of caspase-8 expression (Fig. 5A, B) along
with a drastic increase in the cleaved caspase-3 (Fig. 5A, C).
Enhancement of the cleaved PARP1 expression was also de-
tected in LPS-treated BV2 cells (Fig. 5A, D). However, there
was no alteration in the expression level of cleaved caspase-9
after 36 h of LPS treatment (Fig. 5A, E).

Effect of LPS treatment on the apoptotic pathways in
MG6 cells

Immunoblot analysis of the caspase signaling pathway in
LPS-treated MG cells was performed in an attempt to observe
the molecular events that activate MG death. The results re-
vealed a marked increase in the expression of the cleaved
caspase-9 (Fig. 6A, B), caspase-3 (Fig. 6A, C), and caspase-
8 (Fig. 6A, E). In addition, a remarkable increase in the ex-
pression of the apoptotic marker, cleaved PARP-1 (Fig. 6A,
D) was observed in LPS-treated MG6 cells.
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Fig. 1 Effect of serum starvation A

on BV2 cells. A Quantitative

analysis of cell viability after 72 h 150-
culturing with 10% FBS (control
cells) and 2% FBS (serum-starved
cells). B Representative image for
BV2 cells (scale bar = 50 um). C
Serum-starved cells, TUNEL as-
say revealed no apoptotic cells,
scale bar = 50 um. D Quantitative
analyses of apoptotic cells
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PLS modulated LPS-induced necroptosis in BV2 cells

To examine the modulatory effects of PLS on LPS-
induced cytotoxicity in BV2 cells, cell viability and
TUNEL-assay were assessed. As depicted in Fig. 7A
and B, the treatment of BV2 cells with 1 puL LPS for
36 h caused a necroptosis and, consequently, marked
reduction of cell viability was observed. However, pre-
treatment with PLS could significantly mitigate the
LPS-enhanced cell death (Fig. 7A, B). In addition,
TUNEL assay analysis has identified an observable in-
crease in the positive necroptosis cells after 36 h LPS
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treatment along with a significant reduction in the apo-
ptotic cells in the PLS-pretreated group compared with
LPS sole treatment (Fig. 7C, D).

PLS modulated LPS-induced necroptosis in MG6 cells

To investigate whether PLS could attenuate LPS-
induced necroptosis in MG cells, MG6 cells were used.
Short-course PLS incubation time was analyzed to as-
certain if LPS-induced necroptosis were promoted. MG6
cells were treated with and/or without PLS and cell
viability was determined. The data support a diminished
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Fig. 2 Effect of serum starvation A
on MG6 cells. A Quantitative
analysis of cell viability after 72 h
culturing with 10% FBS (control
cells) and 2% FBS (serum-starved
cells). B Representative image for
MG6 cells (scale bar = 50 pm). C
Serum-starvedcells, TUNEL
assay revealed no apoptotic cells,
scale bar = 50 um. D Quantitative
analyses of apoptotic cells
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LPS insult capacity to induce cell necroptosis as pre-
sented in Fig. 8 A and B. In comparison to LPS indi-
vidual treatment, PLS-pretreated cells demonstrated a
substantial decrease in necroptosis (Fig. 8C, D).
Moreover, the western blot analyses exhibited that the
pretreated cells with PLS for 12 h showed a significant
reduction in the up-regulated expressions of the cleaved
caspase 8 and 3 as well as PARP-1 compared to the
LPS sole treatment (Fig. 9). The data obtained from
Figs. 7, 8, and 9 suggested the existence of inhibitory
activity of PLS against LPS-induced caspase signaling
in MG cells.
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Discussion

The present study explored the roles of caspase signaling in
LPS-induced necroptosis as well as the mitigating effect of
PLS in MG cells via long-time exposing BV2 and MG6 to
LPS treatment. The obtained data revealed that MG cell via-
bility was affected by the LPS treatment, but not by the serum
starvation. LPS mediated the extrinsic and intrinsic pathways
of necroptosis in BV2 and MG6 cells. However, PLS signif-
icantly inhibited the LPS-induced necroptosis in both cells.
In the current study, BV2 and MG6 cultured in serum-
starved media for 72 h revealed no changes in the cell viability

@ Springer
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Fig.3 LPS treatment induces A

BV2 cells apoptosis. A 150-
Quantitative analysis of BV2 cell mm Control
viability after LPS exposure at

different time-points (*p < 0.05 vs mm LPS
control group). B Representative
image for BV2 cells (scale bar =
50 um). C Apoptotic cells were
examined by TUNEL assay with
corresponding DAPI picture after
being exposed to 1 pg/ml LPS for
36 h; scale bar = 50 um. D The
percentage of positive apoptotic
cells is shown in the bar graph
(**p < 0.01 vs control group)
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and number of TUNEL-positive cells as well. These data sug-
gest that serum starvation for 72 h could not induce the cas-
pase signaling in the non-neuronal cells, BV2, and MG6 cells.
Our findings are consistent with that obtained by Hossain et al.

(2013), who investigated the effect of serum starvation on the
mitochondrial apoptotic pathways in the non-neuronal cells.
On the other hand, Burguillos and his group have reported a
MG activation under LPS short time treatment (6 h)

@ Springer
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Fig. 4 LPS treatment induces
MG6 cells apoptosis. A
Quantitative analysis of MG6 cell
viability after LPS exposure at
different time-points (*p < 0.05 vs
control group). B Representative
image for MG6 cells (scale bar =
50 pm). C Apoptotic cells were
examined by TUNEL assay with
corresponding DAPI picture after
being exposed to 1 pg/ml LPS for
36 h; scale bar = 50 um. D The
percentage of positive apoptotic
cells is shown in the bar graph (*p
< 0.05 vs control group)
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(Burguillos et al. 2011). It is well documented that activation ~ neuronal cells. However, these events may be accompanied
of MG caspase-3 is required to initiate the inflammatory re- by the over-activation of MG cells making the matter worse
sponse and production of cytokine in order to protect the  and enhancing the neuronal damage (Colonna and Butovsky
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Fig. 5 LPS induces extrinsic Control LPS

apoptosis in BV2 cells. A BV2 . A - ’
cells were subjected to 1 ug/mL - - caia\::e 9
LPS for 36 h and western blot was P
performed. B Cleaved caspase-8 8000
is elevated in response to LPS Cleaved - e
(*##p <0.001, n = 3). C Caspase- SN . | cospase 8 g 6000-
8 activation leads to increase the &
cleaved caspase-3 expression Cleaved % g
(**#p < 0.001,n=3). D Increased s | caspase 3 S 8 4000
expression of the cleaved PARP-1 -JY
(**p < 0.01, n = 3). E Caspase-9 Cleaved °>’
expression was not changed in — PARP-1 g 20004
response to LPS treatment. For (&]
densitometry, (3-actin was used as
a loading control. All data are -acti 0-
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displayed as means + SEM LPS
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2017), which dedicates the importance of regulatory mecha-
nisms required for MG survival and activation.

Along with the present study, several studies support the
implication of extrinsic caspase signaling in MG apoptosis.
Extrinsic apoptosis is known to begin by activation of
caspase-8 which derives activated caspase-3; thereby, the
cleaved PARP-1 is up-regulated triggering the MG apoptosis
(Vanden Berghe et al. 2015). In a study performed by Xie
et al. (2010a), BV2 cells and mouse primary culture were
exposed to morphine. That experiment concluded that
caspase-8 plays a central role in the MG apoptosis induced
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by morphine exposure. In another study conducted by the
same research group, extrinsic apoptosis was stimulated in
the BV2 MG cell after valproic acid treatment (Xie et al.
2010b). Moreover, short time LPS treatment has been report-
ed to induce caspase-8 and caspase-3 activation which regu-
lates the activation of the MG cells via a PKCd-dependent
pathway and eventually triggers a pro-inflammatory response
required for mitigating the neuronal injury (Burguillos et al.
2011; Shen et al. 2018; Ali et al. 2019). In the same line, our
results indicated that a long-time (36 h) treatment of LPS in
BV2 cell showed enhanced expression of caspase 8 and 3
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Fig. 6 Mitochondrial apoptosis is A Control LPS

specific for MG6 toward LPS

treatment. A Western blot A Cleaved

analysis was performed for MG6 caspase 9

cultured with and without LPS 1

pg/mL for 36 h. B Western blot

analysis and corresponding den- — — Cleaved -

. . . . . caspase 8 =)
sitometry identified an increase in o
cleaved caspase-9 levels in LPS )
whole cell lysates compared with Cleaved o

[}
controls (*p < 0.05,n=3). C - caspase 3 3
Caspase-9 activation results in -
increase the cleaved caspase-3 9
i 3 — Cleaved ]
expression (*p < 0.05,n=3). D S— >
Increased expression of the PARP-1 3]
cleaved PARP-1 (**p <0.01,n=
3). E Caspase-8 expression was ti
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without changes in caspase 9. Later on, these events
progressed to activation of the downstream target, PARP-1
(apoptosis marker) suggesting that the observed BV2 cell
death has occurred via the extrinsic apoptotic pathway in
TLR4-dependent mechanisms (Lemmers et al. 2007).
Interestingly, in the present study, long-time-LPS treatment
triggers intrinsic and extrinsic apoptosis in MG6 cells. There
is evidence that showed a crosstalk between the intrinsic and
extrinsic pathways of apoptosis after prolonged LPS exposure
which occurred via the mitochondrial disintegration associat-
ed with caspase-3 activation in a process mediated by the

cleaved caspase-9 along with up-regulation of caspase 8. In
this study, it is assumed that LPS treatment promotes the
TLR4 endocytosis and further caspase-8 activation with nu-
clear factor kappa B (NF- B) up-regulation and downstream
production of pro-inflammatory cytokines (Ali et al. 2019).
By another way, LPS treatment increased the production of
ROS leading to DNA damage and further translocation of
Bax; thereby, the mitochondria lose their membrane potential
in a process that progressed to the release of cytochrome ¢ and
caspase-9 activation for the induction of apoptotic cascade
(Wu et al. 2014). A significant cell death indicated by a
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Fig. 7 PLS pretreatment inhibits LPS-induced apoptosis in BV2 cells. A
Representative image for BV2 cells after treatment with LPS and/or PLS
(scale bar = 50 um). B Quantitative analysis of cell viability. C The bar
graph depicts the percentage of BV2 cells that were positive for apoptosis

remarkable reduction of cell viability and increased positive
apoptotic cells were denoted in MG6 cells after long-time
treatment by LPS. These events may be attributed to the
LPS-enhanced expression of the cleaved caspase-9 and
cleaved caspase 8. The implication of caspases 3, 8, and 9 in
the LPS-induced apoptosis confirms the data obtained by pre-
vious reports supporting the crosstalk between the extrinsic
and intrinsic apoptosis in various cell types (Hu et al. 2015;
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after being exposed to LPS for 36 h and PLS (5 pg/ml) for 12 h; apoptotic
cells were examined using the TUNEL assay with a corresponding DAPI
image; scale bar = 50 um (D). All data are displayed as means = SEM (n=
3; * vs control group; # vs LPS group; **p < 0.01; #p < 0.05; ##p < 0.01)

Elkin et al. 2018; Wang et al. 2018; Xu et al. 2019; Abdeen
et al. 2020).

PLS are a class of phospholipids integrated in the neuronal
membranes. PLS has shown anti-inflammatory and antioxi-
dant activities during neurodegenerative diseases (Su et al.
2019; Fujino et al. 2020). Fujino and his group have docu-
mented the efficacy of oral administration of PLS in improv-
ing cognitive function in patients with mild AD (Fujino et al.
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Fig. 8 PLS pretreatment inhibits LPS-induced apoptosis in MG6 cells. A
Representative image for MG6 cells after treatment with LPS and/or PLS
(scale bar = 50 pm). B Quantitative analysis of cell viability. C The bar
graph depicts the percentage of MG6 cells that were positive for apoptosis

2017). Recent work has implied that MG cells necroptosis
contributes to caspase signaling and neuroinflammatory reac-
tions via TLR4 activation (Huang et al. 2018). In the current
study, PLS could potentially inhibit the accelerated LPS-
induced up-regulation of caspase-8 and 3 and PARP-1 to
levels near to controls. These findings explain the role of
PLS in inhibiting the caspase-dependent apoptotic pathways
after long LPS treatment. As a sequent, marked improvement

after being exposed to LPS for 36 h and PLS (5 pg/ml) for 12 h; apoptotic
cells were examined using the TUNEL assay with a corresponding DAPI
image; scale bar = 50pum (D). All data are displayed as means = SEM (n=
3; * vs control group; # vs LPS group; **p < 0.01; #p < 0.05; ##p < 0.01)

in the cell viability along with significantly diminished
TUNEL-positive cells after long-time-LPS treatment
were observed. Such improvements might be attributed
to the ability of PLS to reduce LPS-induced TLR4 en-
docytosis and consequently, inhibition of caspase signal-
ing and production of inflammatory mediators (Ali et al.
2019). Moreover, the antioxidant properties of PLS
might have a role in decreasing ROS-induced apoptosis.

@ Springer



Environ Sci Pollut Res

Fig. 9 PLS pretreatment inhibits A B
LPS-triggered caspase signaling Control a
in cells. A Immunoblots of LFs _LFotFls - 8000
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These data confirm the potential role of PLS in attenu-  antioxidant properties. Fig. 10 summarizes the possible

ating the LPS-inflicted necroptosis in MG cells, after  protective mechanisms of PLS pretreatment in LPS
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Fig. 10 Schematic diagram
illustrates the possible protective
mechanisms of PLS pretreatment
in LPS-long-time-treated microg-
lia cell
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Conclusions

Altogether the findings suggest that long-time LPS treatment
could induce necroptosis in MG cells. The caspase signaling
pathway is implicated in the LPS-induced MG death. A
crosstalk between the extrinsic and intrinsic apoptosis has
been reported. The neuronal cell serum starvation could not
affect the non-neuronal cel/MG survival. PLS could mitigate
the LPS-induced necroptosis in MG cells via its anti-
inflammatory and antioxidant properties. We anticipate that
our finding may elucidate some mechanistic insights related
to the effect of long-time LPS treatment on MG survival.
Besides, the potential use of PLS in the regulation of MG cell
activation in order to control neuronal death during neurode-
generative diseases.
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